Multidimensional Inverse Heat Conduction Calculations
نویسندگان
چکیده
منابع مشابه
Inverse Heat Conduction Problems
In the heat conduction problems if the heat flux and/or temperature histories at the surface of a solid body are known as functions of time, then the temperature distribution can be found. This is termed as a direct problem. However in many heat transfer situations, the surface heat flux and temperature histories must be determined from transient temperature measurements at one or more interior...
متن کاملSolving an Inverse Heat Conduction Problem by Spline Method
In this paper, a numerical solution of an inverse non-dimensional heat conduction problem by spline method will be considered. The given heat conduction equation, the boundary condition, and the initial condition are presented in a dimensionless form. A set of temperature measurements at a single sensor location inside the heat conduction body is required. The result show that the proposed meth...
متن کاملA modified VIM for solving an inverse heat conduction problem
In this paper, we will use a modified variational iteration method (MVIM) for solving an inverse heat conduction problem (IHCP). The approximation of the temperature and the heat flux at are considered. This method is based on the use of Lagrange multipliers for the identification of optimal values of parameters in a functional in Euclidian space. Applying this technique, a rapid convergent s...
متن کاملQuantifying Uncertainty in Multiscale Heat Conduction Calculations
In recent years, there has been interest in employing atomistic computations to inform macroscale thermal transport analyses. In heat conduction simulations in semiconductors and dielectrics, for example, classical molecular dynamics (MD) is used to compute phonon relaxation times, from which material thermal conductivity may be inferred and used at the macroscale. A drawback of this method is ...
متن کاملThe method of fundamental solution for solving multidimensional inverse heat conduction problems
We propose in this paper an effective meshless and integration-free method for the numerical solution of multidimensional inverse heat conduction problems. Due to the use of fundamental solutions as basis functions, the method leads to a global approximation scheme in both the spatial and time domains. To tackle the ill-conditioning problem of the resultant linear system of equations, we apply ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2006
ISSN: 1617-7061,1617-7061
DOI: 10.1002/pamm.200610359